
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 137.138.93.202

This content was downloaded on 09/03/2016 at 07:52

Please note that terms and conditions apply.

Investigation of High-Level Synthesis tools’ applicability to data acquisition systems design

based on the CMS ECAL Data Concentrator Card example

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys.: Conf. Ser. 664 082019

(http://iopscience.iop.org/1742-6596/664/8/082019)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/664/8
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Investigation of High-Level Synthesis tools’

applicability to data acquisition systems design based

on the CMS ECAL Data Concentrator Card example

Michal HUSEJKO and John EVANS

CERN, European Laboratory for Nuclear Research, Switzerland

E-mail: michal.husejko@cern.ch

Jose Carlos RASTEIRO DA SILVA

LIP, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Portugal

Abstract. High-Level Synthesis (HLS) for Field-Programmable Logic Array (FPGA)
programming is becoming a practical alternative to well-established VHDL and Verilog
languages. This paper describes a case study in the use of HLS tools to design FPGA-based data
acquisition systems (DAQ). We will present the implementation of the CERN CMS detector
ECAL Data Concentrator Card (DCC) functionality in HLS and lessons learned from using
HLS design flow.

The DCC functionality and a definition of the initial system-level performance requirements
(latency, bandwidth, and throughput) will be presented. We will describe how its packet
processing control centric algorithm was implemented with VHDL and Verilog languages. We
will then show how the HLS flow could speed up design-space exploration by providing loose
coupling between functions interface design and functions algorithm implementation.

We conclude with results of real-life hardware tests performed with the HLS flow-generated
design with a DCC Tester system.

1. Introduction
The DCC is a part of the Off-Detector Electronics sub-system of the CMS Electromagnetic
Calorimeter (ECAL). It is responsible for collecting of data from the front-end system and the
collection of trigger data from the ECAL trigger system. Data is transmitted from the DCC to
the CMS DAQ system. The architecture of the CMS ECAL Off-detector trigger and readout
architecture is presented on figure 1.

This study describes the implementation of DCC functionality in C and C++ languages by
utilizing the Xilinx High Level Synthesis (HLS) compiler. Based on C/C++ input, the compiler
is able to produce a VHDL/Verilog IP core which then can be instantiated inside a user design.

The main goal of this study is to perform feasibility investigation if the HLS tools are capable
and mature enough to be applied to building data acquisition systems.

Due to some technical limitations, we are studding only FE On-detector data readout path
(DAQ Data on the figure 1) and Selective Readout (SR Flags). Other DCC sub-systems are not
included in this study (TCC, TTC, SpyMem, VME interface, etc.).

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082019 doi:10.1088/1742-6596/664/8/082019

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



Figure 1. CMS ECAL Off-detector trigger and readout architecture.

2. The CERN CMS ECAL Data Concentrator Card (DCC)
Current production version of the DCC has been designed as a 9U VME board. Figure 2
presents the board’s physical overview. The DAQ data processing path is distributed among 11
FPGA devices: nine Xilinx Virtex II Pro devices and two Altera Stratix II devices. The FPGA
firmware is implemented in a mixture of SystemVerilog, VHDL and Altera Quartus schematics.

Figure 2. CERN CMS ECAL Data Concentrator Card (DCC).

There are three main building blocks on the DCC which jointly implement the data processing
path: Input Handler (IH), Event Merger (EM) and Event Builder (EB). The Input Handler is
replicated nine times (9x VIIPro FPGAs). The Event Merger has its own FPGA, as does the
Event Builder.

The main functionality of the DCC is to receive FE data from 70 optical links. After data
quality and synchronization checks are performed the data reduction algorithm is applied (6-
tap Finite Impulse Response filter). More details about DCC data processing algorithm can
be found in [2]. The 64 links are terminated in eight Input Handlers; the remaining 6 links
are terminated in the 9th IH. The 9th IH also receives data from the Selective Readout (SR)
Processor, which then are then distributed to other Input Handlers.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082019 doi:10.1088/1742-6596/664/8/082019

2



The Event Merger merges data from all Input Handlers, under the control of the Event
Builder. When all the data is ready, the DCC sends data into DAQ system over the SLINK64
interface. The block diagram of this functionality is presented on figure 3.

Figure 3. DCC block diagram.

The FPGA firmware verification environment was built with SystemVerilog and Advanced
Verification Methodology (AVM).

3. High Level Synthesis with Xilinx Vivado HLS
The Xilinx Vivado HLS application transforms a C/C++ design into a HDL implementation
(either VHDL or Verilog). The HDL implementation can be then synthetized into Xilinx FPGA
device. Together with the C/C++ design, the user should provide constraints and directives
to achieve good quality of result. The C/C++ design shall be accompanied with a Testbench
(in C/C++), which can also be automatically converted into a HDL testbench [3]. The block
diagram of the HLS design flow process is presented on figure 4.

Figure 4. Vivado HLS Design Flow as represented in [3].

4. Initial set of requirements
For the purpose of evaluating the Vivado HLS for building data acquisition system we decided
to implement in HLS all three main building blocks of the DCC i.e. IH, EM and EB. We have
also included the SR receiver.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082019 doi:10.1088/1742-6596/664/8/082019

3



Due to software license we were constrained to use series-7 and later FPGA devices inside
Vivado HLS. For that reason, we have selected Virtex-7 device and corresponding Xilinx
development kit (Xilinx VC709) as a hardware test platform. Due to the limited number of
high speed I/O available from that hardware we decided to scale down the number of IH links
from 70 down to 8. The figure 5 presents the block diagram of the HLS DCC design. Figure 6
represents hardware realization.

Figure 5. Block diagram of the HLS DCC test
platform.

Figure 6. Hardware realization of
HLS DCC.

The total number of links attached to the HLS DCC is 10. It allows emulating eight Front
End (FE) data links (towers), one SR link, and one DAQ link. All the links are attached to a
tester through 10Gb Ethernet UDP cores. In this evaluation, the DAQ link is configured as a
standard 10 Gb UDP stream as opposed to Slink64 used in the production DCC system.

Each FE link attached to IH caries packets of 284 words. In each packet 250 words
(250x16bits) are ADC samples (25 crystals x 10 ADC samples). If the packet can not be
suppressed (due to ZS decision) is has to be completely forwarded to EM as a 75 long long
packet (75 x 64 bits). The SR link caries packets of 22 16-bit words. Both the FE and SR data
formats are defined in [4].

In ideal conditions where data for each IH is cross-aligned and there is no wait time between
IH and SR packets, the latency of the HLS DCC system should not be more than 22+284+Nx75
cycles, which for eight channel test system (N=8) gives 906 cycles. Our requirement is to achieve
latency no worst that 50% of the 906 clock cycles.

5. Implementation of DCC in C/C++
The HLS DCC design was split into four C functions: DCC SR, DCC IH, DCC EM and
DCC EB, each respectively implementing (SR, IH, EM and EB functionalities).

The HLS DCC top level C/C++ function (DCC TOP) is presented on the figure 7. It contains
sequential calls to C sub-functions. Each sub-function implements one of the four functional
elements of DCC (IH, SR, EM, and EB). The interface between HSL top function (DCC TOP)
and 10 Gb UDP cores is AXI-S and is automatically synthetizes from DCC TOP parameter list.
At C level the interface list is defined as a one dimension and multi-dimensional arrays.

The first call is to DCC SR, which receives SR flags and distributes them to DCC IH. The
DCC IH are called sequentially in the loop, and by default the calling loop is rolled. The results
provided by DCC IH functions are merged by DCC EM. Finally the DCC EB performs the final
event building and sends data to the 10 Gb UDP link.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082019 doi:10.1088/1742-6596/664/8/082019

4



Figure 7. HSL DCC high level C function. TOWER NUM=8

Each function was implemented using standard C data structures and all memory was
modelled with multi-dimensional arrays. We have avoided multi-access pointers as they can
cause unexpected results.

5.1. Default HLS compiler constraints - serial processing
We started our evaluation by utilizing default constraints and directives of Vivado HLS. By
default the synthetized design is serial. The C functions are synthetized into HDL hierarchical
blocks. We do not specify initiation interval (II) so the Vivado HSL tries to minimize latency
and then area. Loops are left rolled. All the tasks are executed in sequence. This creates designs
with very high latency, but the final size of the design is small as many building blocks can be
re-used to implement similar functionality. Figure 8 presents the schedule of functions’ calls.

Figure 8. Default HLS constraints - serial implementation.

5.2. Tasks Parallelisation
The next step is to parallelize the tasks taht are independent. This is the case for all DCC Input
Handlers which can execute in parallel.

To achieve parallelization of tasks we unroll the FOR loop which executes the calls to DCC IH.
This creates multiple independent operations rather than a single collection of operations. We
use the HLS compiler UNROLL directive.

5.3. Pipeline functions
The next step was to pipeline the functions. The design contains many loops. By applying
function-pipelining directives we allow for concurrent execution of operations, flattening nested

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082019 doi:10.1088/1742-6596/664/8/082019

5



Figure 9. Parallel execution of DCC IH tasks.

loops, and rewinding consecutive appearances to fill the execution gaps if the loop is running
continuously.

5.4. Partition arrays into parallel memory blocks
FPGA has thousands of dual port BRAM memories. We can utilize them to improve
throughput (more RAM ports, which can enable vectorised operations. This also decreases
latency of the design as the data can be read and processed faster. For that purpose we use
ARRAY PARTITION directive to partition a single C array into multiple parallel FPGA block
RAMs (times N), virtually creating N port BRAM.

5.5. Pipeline tasks
The last optimization is to enable DCC TOP task pipelining, by utilizing DATAFLOW
directive. This decouples tasks’ execution in the top level function and allows partial overlap of
computations. This further reduces the latency of the design.

Figure 10. Enabling partially overlapping computations.

5.6. Summary
All the above design space exploration has been done without changing a single line of code of
our DCC C/C++ implementation. Utilizing Vivado HLS pragmas, allowed us to control both
the scheduling and binding of our high level code and optimise performance.

Table 1. Summary of design space exploration performed on HLS DCC design. Latency is
defined as 6 ns clock cycles.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082019 doi:10.1088/1742-6596/664/8/082019

6



The results presented in the table 1 show that the final HLS design which is represented by
Step 5 in the above table, has a latency which is 59 % higher than the theoretical latency of 906
cycles. This is very close to our goal of 50 %. Step 5 also achieved more than 600 clock cycles
of initiation interval which means that there are 600 clock cycles of dead time.

6. Hardware tests
The hardware tests were carried out to verify that the code can be synthetized and a correct
bitstream generated.

We have built a HLS DCC Tester system based on a standard PC workstation for testing. The
workstation was fitted with 10Gb low latency cards. Five dual SFP+ rail cards were installed
to provide 10 links, each operating at 10Gb speed. The HSL DCC Tester system is presented
in figure 11.

Figure 11. HLS DCC Tester.

A set of test applications has been written in C to communicate over sockets with the HLS
DCC. These applications were used to stimulate design with eight parallel FE-like streams and
SR flags and check the results arriving over the DAQ link.

Only functional tests were carried out without performing performance tests. This was due
to high initiation interval represented by the final design (600 cycles for Step 5 in table 1) which
would create meaningless results.

7. Lessons learned
Our evaluation has show that notably good results can be achieved even with C code which is
not optimized for FPGA architecture. This indicates that much better results can be obtained
if the code is more optimized towards FPGA devices e.g. using streaming data and algorithms
to operate on it.

Based on our experience gained during this investigation we can claim that an engineer who
would use HLS tool could possibly achieve higher productivity than a non-HLS enabled engineer.
A junior engineer can gain high productivity gain by using HLS when supervised by experienced
engineer.

8. Future plans
We plan to investigate in the near future different C coding styles which might better be suited
for HLS implementation. We also plan to migrate the HLS DCC design to streamed architecture
which would allow us to achieve single clock initiation interval - the missing design feature which

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082019 doi:10.1088/1742-6596/664/8/082019

7



could prove that HLS could possibly replace HDLs for DAQ system building. This would also
allow us to perform performance analysis of a new design.

For the next step we plan to extend our study to Altera OpenCL SDK and Xilinx SDAccel
compilers.

9. Conclusion
We have shown that Vivado HLS application can be used in building DAQ systems. It is
capable enough to take a DSP behavioural C code (FIR filtration) wrapped with conditional
packet processing control logic and translate it into working HDL. The generated HDL can be
synthetized and implemented on FPGA in the same way as an ordinary HDL IP core. Even
though C is sequential language in its nature, the HLS compiler directives provide a way to
perform design tuning.

References
[1] Data concentrator card and test system for the CMS ECAL readout, Almeida N. 9th Workshop on Electronics

for LHC Experiments, Amsterdam, The Netherlands, 29 Sep - 3 Oct 2003, pp.115-118
[2] Data filtering in the readout of the CMS Electromagnetic Calorimeter, Almeida N. et al. JINST 2008
[3] High Level Synthesis, Vivado Design Suite User Guide, Document version 2015.1
[4] ECAL Data Concentrator Card Specifications, LIP internal document

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082019 doi:10.1088/1742-6596/664/8/082019

8




